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ABSTRACT

Motivation: The elucidation of biological concepts enriched with
differentially expressed genes has become an integral part of the
analysis and interpretation of genomic data. Of additional importance
is the ability to explore networks of relationships among previously
defined biological concepts from diverse information sources, and
to explore results visually from multiple perspectives. Accomplishing
these tasks requires a unified framework for agglomeration of data
from various genomic resources, novel visualizations, and user
functionality.
Results: We have developed ConceptGen, a web-based gene set
enrichment and gene set relation mapping tool that is streamlined
and simple to use. ConceptGen offers over 20 000 concepts
comprising 14 different types of biological knowledge, including
data not currently available in any other gene set enrichment or
gene set relation mapping tool. We demonstrate the functionalities
of ConceptGen using gene expression data modeling TGF-beta-
induced epithelial-mesenchymal transition and metabolomics data
comparing metastatic versus localized prostate cancers.
Availability: ConceptGen is part of the NIH’s National Center
for Integrative Biomedical Informatics (NCIBI) and is freely
available at http://conceptgen.ncibi.org. For terms of use, visit
http://portal.ncibi.org/gateway/pdf/Terms%20of%20use-web.pdf
Contact: conceptgen@umich.edu; sartorma@umich.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
An important step in the analysis and interpretation of gene
expression, proteomic, metabolomic or transcription factor binding
data is answering the question, ‘What biologically related sets of
genes are enriched with the interesting genes/proteins/compounds
identified in my experiment?’ Such analysis applied to gene
expression data is often referred to as gene set, or functional,
enrichment testing. Gene sets defined by Gene Ontology (GO)
(Ashburner et al., 2000; Harris et al., 2004) or KEGG pathways
(Kanehisa et al., 2006) are often employed, and the statistical
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significance of enrichment can be established using the Fisher’s
exact test and the hypergeometric distribution. Several web-based
or downloadable tools performing this or a similar test have been
developed, such as Onto-Express (Draghici et al., 2007; Khatri et al.,
2005), David/EASE (Dennis et al., 2003; Hosack et al., 2003),
the Gostats package of Bioconductor (Gentleman, 2007), GOMiner
(Zeeberg et al., 2003, 2005) and FuncAssociate (Berriz et al., 2003).
A second research question, often viewed as separate from the first,
is based on testing hypotheses of correlated signatures between
disparate sources of biological knowledge. For example, are genes
targeted by a specific microRNA more likely to be involved in a
disease progression process than expected by chance? These two
common types of research questions can be answered within the
same analysis framework of gene set relation mapping.

While there is a plethora of tools for enrichment testing, few
offer the level of visualization and interactivity desired by many
biomedical researchers to explore results. Gene set relation mapping
is a technique that extends beyond enrichment testing and can enable
wide-spanning exploratory analysis and hypothesis generation by
visualizing relationships among concepts. In addition to testing the
overlap between an experimental gene list and predefined gene sets
(concepts), the significant overlap among all predefined gene sets
(concepts) is assessed. Two concepts are related when they have
significantly more genes in common than expected by chance, and
these relationships can form a network. Testing among concepts
allows one to visualize the networked relationships among concepts
enriched with genes in an experimental dataset. For example, one
may observe that the concepts enriched with their data cluster
into three distinct groups each having previously unsuspected
relationships between concepts from diverse concept types. Concept
types represent data from different sources of biological knowledge,
such as biological processes, microRNA target lists, chromosomal
regions, or drug target lists. Another approach to visualizing gene
set relations is by clustering genes versus enriched concepts in a
heatmap view. This allows one to see in a glance which subset
of genes is responsible for the enrichment of which concepts,
in addition to visualizing which concepts are closely related (see
Section 2.7). Together, the network and heatmap enable a more
biologically comprehensible understanding of functional enrichment
results.
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One type of gene set relation mapping was implemented and
incorporated in the software Oncomine (Rhodes et al., 2007)
(referred to as molecular concept mapping). It allows investigators
to easily navigate the complex and diverse public domain gene
expression knowledge relating to cancers through the use of data
integration, manual curation, statistical analyses and visualization
tools. This approach has led to important discoveries, particularly in
research related to the progression of prostate cancer (Morris et al.,
2007). However, this initial gene set relation mapping lacked some
key sources of biological information included here in ConceptGen,
such as protein–protein interactions other than from HPRD and
metabolite information; it also relied on basic statistics for analysis
of gene expression data, and restricted gene expression signatures
to those related to cancer due to the program’s cancer-related focus
(see Table 2 for comparison). DAVID/EASE (Dennis et al., 2003)
offers a different type of gene set relation mapping in which clusters
of related gene sets are formed using kappa statistics; however no
visualization is offered, and one cannot observe connections between
gene sets in different clusters.

Here we present a new web-based software application,
ConceptGen, that may be used as a gene set enrichment and gene
set relation mapping tool. It contains several sources of biological
knowledge, offers multiple visualizations, and has a convenient user-
interface. In addition, we have performed gene-to-gene enrichment
testing which identifies closely related genes based on significance
of co-occurring concepts. This provides an additional viewpoint and
database for addressing further questions. A similar approach to
identifying related genes is used in the new Paralog Hunter tool in
GeneDecks, which uses a variety of concept types from GeneCards
to identify functional paralogs (Safran et al., 2003; Stelzer et al.,
2009).

NCBI’s Gene Expression Omnibus (GEO) data repository
(Edgar et al., 2002) offers a wealth of experimental data.
As one concept type in ConceptGen, we have downloaded,
processed and analyzed human raw Affymetrix data from GEO
to create gene expression-based concepts covering a wide variety
of expression signatures from reactions to treatments, diseases,
exposures, genotype, development and injury/infection. Taking such
an unbiased approach to data inclusion allows one to identify
previously unsuspected relationships among diverse biological
perturbations, and generating novel hypotheses. The datasets can
be expanded to utilize epigenomics, proteomics, metabolomics and
microRNA inputs.

2 METHODS

2.1 Concept building
Concepts (gene sets) were defined based on a wide variety of types
of biological knowledge (concept types) with the goal of being able
to identify novel relationships among diverse sources. The types of
biological knowledge are: biological processes, molecular functions, cellular
components, protein-interactions, medical literature-derived concepts,
human diseases, drug targets, chromosomal location, molecular pathways,
transcription factor targets, protein families, microRNA targets, metabolite-
centered concepts and gene expression signatures (Table 1). Concepts and
concept types were downloaded automatically or manually from various
genomic resource centers, entries were converted to NCBI Entrez Gene IDs,
and concepts were uploaded and are stored in an Oracle database. In order
to avoid non-informative or overly-broad concepts, we limit the scope to

Table 1. Biological knowledge types represented in ConceptGen and their
Concept Type(s)

Biological knowledge type Concept type(s) Number of
concepts

Biological processes GO biological process 2477
Molecular functions GO molecular function 1075
Cellular components GO cellular component 446
Protein-centered

interactions
MiMI 6823

Medical literature derived
concepts

MeSH 5214

Human diseases OMIM 52
Drug targets Drug Bank 256
Chromosomal location cytoband 1178
Molecular pathways KEGG pathway; 195

Panther pathway; 86
Biocarta pathway 245

Transcription factor targets Transfac 119
Protein families Pfam 770
microRNA targets MiRBase 587
Metabolic interactions Metabolite 960
Differential expression

profiles
Gene expression 603

The total number of concepts is 21 086.

between 5 and 1000 genes per concept; when necessary, manual curation
was performed. GO, KEGG pathway, Biocarta Pathway, Panther Pathway
and Pfam information was downloaded from their respective sources.
Chromosomal location was determined by NCBI cytoband assignment, and
gene expression signatures were defined as detailed in Methods section 2.2
and Supplementary Methods section. Other concept types (literature-derived
concepts, human diseases, drug targets, transcription factor targets, protein-
interactions, microRNA targets and metabolite-centered targets) were built
as detailed in Supplementary Methods section.

2.2 Gene expression analysis
In order to define expression-based concepts, we developed a gene expression
analysis pipeline that uses a carefully chosen, statistical method for each
step. The gene expression concept type is populated with human Affymetrix
experiments in GEO. Details of the analysis pipeline are provided in the
Supplementary Methods section, and outlined briefly here. The pipeline
downloads the raw data, pre-processes it with a Entrez ID centered CDF
package (Dai et al., 2005) and normalizes it, outputs quality control data,
and tests for differentially expressed genes using an empirical Bayes method
(Sartor et al., 2006). The tests are set up manually through an interface, and
following testing, gene sets (concepts) are defined by the top ranked genes.

2.3 Enrichment testing
For public concepts, all pairs of concepts from all concept types were
tested for whether there exists a larger number of overlapping genes than is
expected by chance. We use a slightly modified Fisher’s exact test, identical
to the ‘Ease score’, which helps to stabilize results by penalizing tests with
small numbers of overlap (Hosack et al., 2003). P-values are adjusted for
multiple testing by calculating q-values using the FDR method (Benjamini
and Hochberg, 1995). The default display is those concepts with q-value
<0.05, but the user may choose a different q- or p-value cutoff.

Gene lists uploaded by the user are considered concepts in their private,
Experimental concept type. The gene lists are converted to human Entrez
Gene IDs, if necessary, and stored and tested in a private concept type. Users
have the option of converting from a list of mouse or rat genes using NCBI
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Homologene homolog families with our conversion tool, or from a set of
compounds/metabolites. Users also have the option to upload a background
gene set consisting of all the genes that were interrogated in their study
(e.g. all genes on a microarray platform). If no background set is provided,
ConceptGen uses all Entrez IDs as default. The modified Fisher’s exact test
described above is then implemented, and q-values are calculated for the
experimental list within each concept type separately. Users can filter results
based on concept type(s) and/or significance levels (p- or q-values) for export
in spreadsheet format or visualizations.

Abackground set is defined as all genes (Entrez IDs) that were interrogated
in creating the concept type. For example, for GO concept types, the
background set is all genes that are assigned to at least one ontology term.
It is important to use the correct background gene set for each enrichment
test, and for that we use the intersection of the background gene sets for the
two concept types of the concepts being tested. Thus, for example, if we are
testing a GO term versus a microRNA target list, we use all genes that are
in both the GO background set and the microRNA target background set.

2.4 Gene set relation mapping—graph network
visualization

Users can explore concepts from any of the public sources, or load their
own sets of genes to define private concepts. Once a concept is selected,
the concepts that are paired with it (those whose enrichment scores are
significant) can be selected by category, significance or individually, to
participate in a concept-to-concept graph (see the figs in Section 3.2), with
nodes representing concepts, and edges representing significant enrichment
of overlapping genes. The concept networks, nodes and edges are displayed
in an interactive web application (coded in Adobe� Flex/flash). The graph
is laid out on the display using a standard layout from Adobe’s open source
code, which implements a force directed layout algorithm (Fruchterman
and Reingold, 1991). This layout algorithm results in highly interconnected
groups of concepts clustering together. Within that layout, the concept type
of each concept node is shown by the color, the size of the concept node
is based on the number of genes in the concept, and the thickness of the
edge lines is based on the number of overlapping genes. These graphical
network displays can be further explored to find the genes that concepts
have in common, filter the graph based on sets of genes, display the statistics
associated with a concept or edge, or explore protein interactions within a
node or edge. By moving among the results panel, the graphics display, and
the protein interaction networks, the user can narrow in on a set of concepts
of interest and conceptualize results.

2.5 Gene set relation mapping—heatmap view
The heatmap view offers an alternative view to the network graph, convenient
for visualizing large numbers of concepts. It also allows one to see at a glance
which genes are responsible for the enrichment of which concepts, and which
gene groups co-occur in the same concepts most often (see Supplementary
Figures S8 and S9 for examples). The heatmap plots genes (columns) versus
enriched concepts (rows), and values used are 0 when a gene does not belong
to the concept, or the number of enriched concepts to which the gene belongs
otherwise. Genes and concepts are clustered using the complete linkage
hierarchical clustering method with the Euclidean distance measure. The
color of columns ranges from black (gene does not belong to the enriched
concept) to bright red (genes belonging to the most enriched concepts.) Users
can toggle between the heatmap and graph network views, and can use a
‘draw tool’ to choose a cluster or section of the heatmap to explore in the
graph network display.

2.6 Gene–gene relations by enriched concepts
To visualize how genes are related by concepts and nominate genes by
common annotations, we developed and performed gene-to-gene enrichment
testing. Similar to gene set enrichment testing, a series of modified Fisher’s
exact tests is performed, but with genes replacing concepts, and concept

membership replacing genes. For the application, q-values are calculated
and a q-value <0.01 cutoff is used as default. This testing provides an
alternative to viewing the relationships among genes via known protein-
interaction networks (see Section 3.4). It can also be used simply to query
all concepts that any specific gene is assigned to in ConceptGen. The gene-
to-gene enrichment testing provides a statistical measure of the closeness
of any two genes by annotations, and can be reached through a link on
the main ConceptGen website. Users have many of the same options and
visualizations as for the standard ConceptGen analysis.

3 RESULTS
First, we describe general aspects of ConceptGen and summarize
the concept types and their relationships. We then demonstrate the
performance and functionality of ConceptGen with a typical use-
case scenario: a time course gene expression data set obtained
from a cell culture model of TGF-β-induced epithelial-mesenchymal
transition (EMT) (Keshamouni et al., 2006). We show how
ConceptGen was useful in visualizing the data and contextualizing
prior knowledge to generate new hypotheses, thereby contributing
to the overall understanding of this complex biological process. The
final two results sections demonstrate the use of ConceptGen in
more specific applications: a metabolomics study of prostate cancer
(Sreekumar et al., 2009) and the use of the gene-to-gene enrichment
testing for gene function prediction, respectively.

3.1 Properties of the data in ConceptGen
The general aspects involved in development of a gene set
enrichment or gene set relation mapping tool are: (i) the test used
to assess significance of enrichment, (ii) the concepts and concept
types used, (iii) usability of the software tool, (iv) visualizations
offered by the tool, (v) quality of statistical methods used to build
concepts from experimental data (if applicable); and (vi) adjusting
the significance levels for multiple comparisons. The quality of
the software application will be a function of the above aspects.
Thus in the development of ConceptGen, we have carefully chosen
the implementation of each of these aspects to create an easily
accessible, powerful, stream-lined and accurate enrichment testing
and gene set relation mapping tool.

Table 1 lists the types of biological knowledge incorporated in
ConceptGen and the names of the concept type(s) used to represent
each of them. These concept types encompass pathways, molecular
processes, chromosome location, biological targets, protein–protein
interactions, diseases, and experimental and literature-derived data.
Each biological knowledge type provides the ability to generate
a different type of hypothesis; which concept types are of
greatest interest will depend on the context of the application.
For example, testing the protein interactions concept type will
identify proteins that interact with a significant number of user-
supplied gene products, possibly generating a hypothesis for what
other proteins may be activated or play a central role in the
process under study. For protein interactions, we used the Michigan
molecular interactions (MiMI) database, which deep-merges several
sources of interactions, resulting in a comprehensive database of
human protein-protein interactions and thus greater power to detect
significant enrichments than using any one data source alone. A
notable member of our concept types is MeSH [derived from
Medical Subject Headings (MeSH�)]. Medical subject headings is
the National Library of Medicine’s controlled vocabulary built in a
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Table 2. Comparison of selected functional enrichment testing software

Feature Concept-
Gen

DAVID/
EASE

GSEA/
MSigDB

Oncomine
concept
mapping

GeneDecks

Performs concept
mapping?

Yes No No Yes No

Contains experimental
data?

Yes No Yes Yes, cancer-
related

Yes

Uses modified Fisher’s
exact test?

Yes Yes N/A No No

Private account? Yes No, but
down
load

No, but
down
load

Yes No

Freely available? Yes Yes Yes Limited
academic
version

Yes

Heatmap view of
network?

Yes No No No No

Drug targets? Yes No No Yes PharmGKB
Metabolite? Yes No No No Yes
Protein interactions? MiMI Several No HPRD No
MeSH or other

literature-based
concepts?

Yes No No Yes Disorders
and
compounds

Phenotypes? No No No No Yes
Accepts several gene ID

types?
No Yes No No No

Does not require
cut-off?

No No Yes No No

In depth visualizations
among experimental
datasets?

No No No Yes No

hierarchical structure, which covers subjects ranging from anatomy,
drugs, and diseases to social phenomena, geographical locations
and proteins. Therefore, the MeSH concept type in itself contains
concepts relating to various types of biological knowledge. Use of
the MeSH concept type will help users identify relationships with
concepts in literature that may otherwise be overlooked.

Table 2 compares features of ConceptGen with four related
software programs performing gene set enrichment and/or gene set
relation mapping: DAVID/EASE (Dennis et al., 2003), GSEA and
MSigDB (Subramanian et al., 2005), Oncomine’s molecular concept
mapping (Rhodes et al., 2007) and GeneDecks (Stelzer et al., 2005).
Similar to other programs, such as DAVID, certain concept types
tend to have larger or smaller concept sizes (number of genes
populating each concept) than others, and different distributions
(Supplementary Fig. S1). For example, gene sets based on gene
expression experiments and microRNA targets had the largest
concepts on average. Others, such as GO and MeSH have a broad
range of concept sizes due to their hierarchical nature.

3.1.1 Inter-connectivity among concept types To determine how
closely-related the concept types are amongst themselves, we
calculated a measure of connectivity. Connectivity is defined as s/n
where s = No. of tests between concept types with q-value <0.05
and n = total number of possible connections. As seen in Figure 1,
most although not all concept types have highest connectivity with
self, and the pathway databases KEGG, Biocarta and Panther form a
block of high inter-connectivity. In addition to these expected results,
we observe that the pathways have high inter-connectivity with

Fig. 1. Inter-connectivity among concept types. Connectivity is defined as
s/n where s = No. of tests between concept types with q-value <0.05 and n =
total number of possible connections. Values were clustered using complete
linkage hierarchical clustering in R.

protein interactions and GO. Gene expression data has relatively
high connectivity with KEGG Pathway, GO cellular component,
GO biological process, MiMI, MeSH, and interestingly, microRNA
targets (miRBase). We can speculate that the higher connectivity of
gene expression data with KEGG compared with the other pathway
databases may be an indicator of how well KEGG approximates the
reality of biological systems, although more research is needed to
test this prediction. The clustering divides the concept types into
two groups, which can be interpreted as (i) those that assess the
pathways, molecular processes and cellular networks, and (ii) all
others.

3.1.2 Properties of Gene Expression data As part of our creation
of the Gene Expression concept type, we developed a database
with analysis results from all analyzed experiments, which is a
valuable source of information in and of itself, and is available upon
request. As an example of its use, we wished to determine which
genes are most often and least often differentially expressed. We
observed a broad distribution in how often a gene was differentially
expressed, ranging from 0 to 53% (108) of the 203 experiments
(Supplementary Fig. S2). Genes that were most often differentially
expressed were significantly enriched for involvement in cell cycle
(q = 3.0 × 10−13) (such as CITED2, RGS2, Il8, PTTG1, UBE2C
and several CDC’s and CCN’s), cell proliferation (q = 4.5 × 10−9),
programmed cell death (q = 1.6 × 10−5) (VGEFA, HMOX1, IGF1R,
BCL6, GADD45A, NFKBIA and TOP2A), transcription factors
(q = 2.8 × 10−5) (JUN, FOS, MYC, CEBPB, EGR1, AHR and
DDIT3) and immediate-early proteins (q = 8.2 × 10−5). The genes
least often differentially expressed (three or fewer experiments)
were enriched for G-protein coupled receptors (q = 3.8 × 10−18)
and other sensory receptors, ion channel activity (q = 6.4 × 10−9)
and neurotransmitter binding (q = 6.3 × 10−3).

Although this analysis is dependent on what processes are most
often studied, the specific genes do provide important and useful
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information. We thought it may be especially interesting to identify
genes involved in apoptosis and cell cycle that very rarely change,
and genes involved in receptor and sensory activity that often
change. Upon researching this question, we found that the majority
of the most often-changed genes involved in receptor and sensory
activity were also involved in secondary roles, such as development
or transcription factor activity. On the opposite end of the spectrum,
we found only two genes involved in mitotic cell cycle that were
rarely changed, NEUROG1 and CDC20B. Eight genes playing a role
in apoptosis changed least often. One example is CIDEA, known
to play a role in the activation of apoptosis. Since this protein
activates apoptosis by moving from its sequestered location in the
mitochondria to the nucleus (Valouskova et al., 2008), it is not
surprising that CIDEA was only found to change twice in its total
mRNA level among all the experiments in which apoptosis played
a role.

3.1.3 Use of ConceptGen Users may begin their analyses with
ConceptGen from one of two main entry points: with a public
concept or a private, user-uploaded concept (gene list). The simplest
way to begin is to query or browse the public concepts from the main
page (Supplementary Fig. S3). Alternatively, one can register for a
free academic account and upload, analyze, and store one or more
private concepts. We now demonstrate the use of ConceptGen with
an application with microarray data.

3.2 Application to TGFβ-induced EMT in lung
adenocarcinoma cells

EMT is a highly conserved embryonic and developmental process
that facilitates the dispersion of cells. During EMT, cells lose their
epithelial properties, while acquiring mesenchymal properties which
enable them to migrate to a predetermined destination in order
to generate distinct tissue types (Kalluri and Weinberg, 2009).
A similar process is reactivated in cancer cells as an early event
during tumor metastasis and confers certain fundamental abilities
essential for the process of metastasis. These include the ability to
migrate, invade, resist apoptosis and evade immune surveillance
(Kalluri and Weinberg, 2009). Multifunctional cytokine TGF-β is
a potent inducer of EMT (Thiery and Sleeman, 2006). TGF-β-
induced EMT in A549 lung adenocarcinoma cell line provides an
excellent in vitro correlate for mechanistic investigations of EMT
in the context of tumor progression (Keshamouni et al., 2006,
2009). Here we demonstrate the functionalities of ConceptGen in
enabling visualization of data and contextualizing prior knowledge
to generate new hypotheses, by utilizing time course gene expression
data (Control versus 0.5, 1, 2, 4, 8, 16, 24 and 72 h) obtained from
A549 cells undergoing TGF-β-induced EMT.

Data were processed and analyzed as previously described
(Keshamouni et al., 2009). The data have been deposited in NCBI’s
GEO (Barrett et al., 2007) and are accessible as GSE17708. The
set of differentially expressed genes at each time (defined by
p-value <0.001 and >2-fold change) was uploaded to ConceptGen
for analysis, and network graphs and heatmaps of results were
visualized for each time point. All concept types were used for
testing, although in other situations one may wish to limit testing
to a subset of concept types. Supplementary Figure 4 illustrates
the main results page of ConceptGen and Figure 2 displays the
network graph for the 30 min time point. In this figure, colors

Fig. 2. ConceptGen Network Graph after 30 min TGFβ-induction of A549
cells shows TGF-β receptors, SMAD proteins, Myod1 interactions, and
transcription factor activity to be enriched. Shown are all concepts with
q-value <0.05 after filtering for Gene Expression.

represent different knowledge types. Results for each time point
were then exported from ConceptGen in spreadsheet format and the
enrichment significance profiles for concepts with q-value <0.05
for at least one time point were clustered for an overall visualization
of enriched concept profiles. This allowed us to easily visualize
which processes were being affected throughout the time course.
Model-based clustering (Medvedovic and Sivaganesan, 2002) of
the −log10(p-values) for enrichment was performed separately for
GO terms (Supplementary Fig. S5), Gene expression enrichment
(Supplementary Fig. S6), and other concept types (Fig. 3) for ease
of interpretation.

TGF-β initiates signaling by binding to type II receptors on the cell
surface, triggering the activation of type I receptors. Activated type I
receptors phosphorylate SMAD proteins. Phosphorylated/activated
SMADs move into the nucleus where they bind to transcriptional
co-activators or co-repressors to regulate target gene expression
(Massague, 2000). Enrichment analysis for 30 min to 6 h time
points indicated effects of a robust transcriptional reprogramming
with the modulation of several transcriptional factors (summarized
in Fig. 3 and Supplementary Fig. S5), including SMADs, MyoD
and induction of type I TGF-β receptors (Fig. 2), reflecting the
primary mode of action of TGF-β. Consistent with growth inhibitory
affects of TGF-β (Massague, 2000), we observed enrichment of
concepts that are reflective of negative growth regulation in the
middle time points (Fig. 3 and Supplementary Fig. S5). Similarly,
around the same time points we also observed the enrichment
of GO terms reflecting inhibition of apoptosis (Supplementary
Fig. S5), consistent with the EMT induced apoptotic resistance
demonstrated in earlier studies (Lee et al., 2006). Enrichment of
concepts of cell movement, cell adhesion, extracellular matrix and
matrix metalloproteases (Figs 3 and 4) are reflective of migratory
and invasive phenotypes acquired during EMT (Keshamouni
et al., 2006), whereas the concepts such as regulation of cell
size, actin binding and cytoskeletal protein binding are consistent
with the dramatic change in morphology and robust cytoskeletal
reorganization that occurs during EMT (Thiery and Sleeman, 2006).
On the whole, functional enrichment analysis of multiple biological
knowledge types with ConceptGen coupled with a heatmap viewer
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SMAD; JUN; TGFbeta 
TGFb1 interactions; cell adhe-
sion; extracellular matrix 

Bone; SMADs 

Metallothioneins; TGFb2&3; 
cell movement; Neovasculariza-
tion

Collagens; Cytochrome P450s; 
fibronectin 

Neoplasms 

Thrombosis; RHO/RAC inter-
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Cell proliferation; Neoplasm 
metastasis; Integrin; growth 
factors; cytoskeleton; actins 
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Cyp450s; EGFR; TGFa; disease 
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DNA replication; mini-
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Fig. 3. Heatmap of enriched Concept profiles throughout TGF-β-induced
EMT transition in the A549 cell line for concept types other than GO
and Gene Expression: rows are concepts from KEGG, Biocarta, and
Panther Pathways, MiMI protein interactions, MeSH, Pfam and Transfac.
All concepts with q-value <0.05 for ≥1 time point were clustered using
−log10(p-values) to create a ‘bird’s eye view’ of which processes were
turning on and off throughout the time course. For presentation, enriched
concepts were summarized for each main cluster. Heatmaps for GO and
gene expression concepts are presented in Supplementary Material.

provided a reliable overview of the entire data set, accurately
representing the underlying biology across time points.

ConceptGen also allowed us to contextualize the data in hand with
prior knowledge in the public domain which includes previously
published gene expression data sets (Supplementary Fig. S5) and
protein interaction maps. Enrichment analysis of EMT time course
data with publicaly available gene expression data sets has returned
interesting results. Similar to the analysis of other concept types,
these results were reflective of TGF-β biology and the complexity
of EMT process in a time depedent manner, with specific examples
provided in supplemental material. Overlap with other expression
sets allows identification of common sets of responses that in
combination are not well represented in any other knowledge
domain. For example, one could detect other conditions that resulted
in a certin mix of DNArepair, response to stress and apoptosis. Using
the MiMI NetBrowser tool in ConceptGen, we can also visualize a
network of protein–protein interactions for the genes belonging to
any node or edge, and can identify potential regulatory hubs at each
time point. For example, at the 1 h time point, we identified JUN

Fig. 4. ConceptGen Network Graph after 8hrs of TGFβ induction in
A549 cells shows extracellular matrix, cell adhesion, cell movement and
metallothioneins are enriched, consistent with the migratory and invasive
phenotypes acquired during EMT. Shown are the top significant concepts
from Pfam, MeSH, and MiMI. GO biological processes indicated that
vascular and blood vessel development were also enriched.

Fig. 5. Protein interactions among differentially expressed genes after 1hr
of TGFβ induction in A549 cells, visualized by clicking on the gear icon for
the uploaded concept in the network browser view, which links to the MiMI
NetBrowser view of known protein interactions.

and TGFBR1 as hubs, consistent with the induction and activation
of these two proteins respectively in response to TGF-β (Fig. 5).

3.3 Application with compounds
A novel feature of ConceptGen is its ability to take one or more
compounds as input (in the Upload Gene Set page) and find the
genes encoding metabolic enzymes related to those compounds.
As an example, we input six metabolites that were found to
significantly change in LnCAP cells in the disease progression from
benign to localized to metastatic prostate cancer (Sreekumar et al.,
2009). This list of metabolites (glycerol-3-phosphate, kynurenine,
leucine, proline, sarcosine and uracil) was generated by unbiased
metabolomics experiments, and was linked to a total of 37 genes
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using the methods described for building the Metabolite concept type
(see Supplemental Methods section). The first step in characterizing
a set of metabolites is identification of the biochemical pathways to
which they belong. ConceptGen offers a convenient way to do this,
without having to manually map the compounds individually onto
KEGG or a similar database.

The conclusions from this simple analysis are consistent
with the findings reported in Sreekumar et al. (2009), namely
that amino acid metabolism (q-value = 7.4× 10−12), nitrogen
breakdown (q = 2.3× 10−4) and amino methyltransferase activity
(q = 9.6× 10−3) from GO are enriched (Supplementary Fig. S7).
Upon inspection with the heatmap view, we saw that the above-
mentioned concepts all clustered with the compound sarcosine
(Supplementary Fig. S8), indicating that mainly enzymes related
to sarcosine drove the enrichment of these concepts. Additional
processes identified as enriched were aminoacyl tRNA biosynthesis
KEGG pathway [recently identified as disregulated by androgen in
prostate cancer (Vellaichamy et al., 2009)], and procollagen–proline
dioxygenase activity from GO molecular function, which is involved
in collagen biosynthesis and folding. This is interesting because
collagen production is known to be involved in cancer progression,
and because the prolyl hydroxylase gene family was recently noted
as being a novel class of tumor suppressors, specifically in breast
cancer (Shah et al., 2009).

3.4 Gene-to-gene enrichment application
A noteworthy feature of ConceptGen is its gene-to-gene enrichment
analysis, which can be used to generate hypotheses about the
function or pathway of a gene, and which is based on a significant
overlap in concepts to which the genes belong. As an example
application of this feature, we queried the gene Chac1 [Cation
transport regulator homolog 1 (E.coli)] in the ConceptGen gene-
to-gene browser. This gene was identified as the most significantly
differentially expressed gene in a recent, unrelated RNA-Seq study,
is not annotated to any GO or pathway term, and very little is
known of the function of the CHAC1 protein. The results of our
ConceptGen query showed several related genes, including Ddit3
(Chop), Ddit4, Atf3, Cebpb, Trib3 and several tRNA synthetases, as
being top ranked as most significantly related. The above-mentioned
genes are known to be involved in the unfolded protein response and
apoptosis. However, to objectively predict the function of Chac1,
we uploaded the 100 top ranking genes into our private account in
ConceptGen and determined their enriched concepts. This analysis
showed, as expected based on simple observation of the gene list,
that apoptosis, amino acid transport, tRNA synthetase activity (a
known target group of ATF4), and the activity of Cebpb, ATF4 and
Chop/Ddit3 are enriched (Supplementary Fig. S9).

One year ago, the involvement of CHAC1 in these processes
would have been a novel hypothesis to test. However, recently the
connection between CHAC1 and the ATF4/ATF3/ CHOP cascade
and apoptosis was identified experimentally (Mungrue et al., 2009),
validating our finding with ConceptGen which was based almost
solely on the public microarray data concept type, since Chac1
had no functional annotations and only two protein interactions.
Testing CHAC1 in GeneDeck’s paralog hunter tool did not result
in an enrichment of unfolded protein response or apoptosis genes,
however it did identify cation/ion channel and transport activity
genes. This demonstrates that these two tools are complementary.

Based on these findings, we envision that gene–gene enrichment
analysis will be useful for predicting the pathways and processes of
other unannotated genes.

4 DISCUSSION
Identifying relationships among differentially expressed gene lists
and biological concepts is now known to be very helpful in assessing
the biological relevance of microarray experiments and in the
study of diseases. The ability to visualize such relationships in a
variety of ways further enhances this understanding. While there
is an abundance of tools for functional enrichment testing, few
currently offer the level of visualization and interactivity desired
by many biomedical researchers. We have presented a freely-
available web-based software application, ConceptGen, that offers
such enrichment testing, visualizations and interactivity using gene
set relation mapping and protein interactions. The incorporation
of several concept types covering a variety of types of biological
knowledge provides more opportunities for hypothesis generation
than would testing simply against GO and/or KEGG pathways.
These features, together with ConceptGen’s easy-to-use interface
and private account, make it a desirable complement to related
tools such as DAVID/EASE, GSEA, and the concept mapping in
Oncomine. The concept mapping in Oncomine is supported by a
team of scientists who manually curate the concepts. Oncomine is
also useful due to the additional features and visualizations it offers
for published microarray data which conveniently links directly to
concept mapping. Although Oncomine does have more microarray
datasets in their database than ConceptGen, they are limited to
cancer-related experiments.

We have demonstrated the performance of ConceptGen with
a time series gene expression experiment of TGFβ-induced
EMT in lung adenocarcinoma cells, and have shown how
ConceptGen can also be used for enrichment testing with
a list of metabolites/compounds. Furthermore, we showed
how ConceptGen’s gene-to-gene enrichment testing based on
overlapping concepts can be useful. Future work planned for
ConceptGen includes increasing the size of the gene expression
database by expanding it to include additional microarray platforms
and other experimental data, including experimentally identified
transcription factor binding sites from ChIP-seq, and differentially
expressed proteins identified from proteomics experiments. In order
to allow users to visually compare enrichment results across time
points or other experimental conditions, we plan to implement a
feature to produce heatmaps similar to that created in Figure 3.
Finally, in order to aid in the visualization of networks involving
a large number of concepts, we will augment the basic network
graph with a power graphing technique. This will group highly
correlated concepts into larger meta-concepts that will be easier to
grasp visually.
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